Within-breath variations of forced oscillation resistance in healthy subjects.

نویسندگان

  • R Peslin
  • Y Ying
  • C Gallina
  • C Duvivier
چکیده

Respiratory resistance (Rrs) was measured by the forced oscillation technique at 10, 20 and 30 Hz in 54 healthy subjects. The sinusoidal pressure oscillations were applied around the head, rather than at the mouth, so as to minimize transmural pressure across extrathoracic airway walls and the corresponding artefact (Peslin et al., J Appl Physiol, 1985, 59, 1790-1795). The flow (V') and volume (V) dependences of Rrs during the respiratory cycle were analysed by least square regression according to: Rrs = K1 + 2.K2.[V']#- K3.V, where K1 and K2 are Rohrer's constants, and where K3 expresses the (negative) volume dependence of Rrs. The analysis was made separately on the inspiratory and expiratory phases. A good fit was usually found between the data and the model, with a root-mean-square error averaging 15% of the mean Rrs at 10 Hz. At all frequencies K2 and K3 were substantially and significantly larger, and K1 slightly lower during expiration than during inspiration. Rrs, K1 and K3 were minimum at 20 Hz, while K2 exhibited a strong positive frequency dependence. The decrease of Rrs from 10 to 20 Hz was entirely explained by the variations of its linear component, and its increase from 20 to 30 Hz was largely due to its flow dependent component. Both the phasic variations and the frequency dependence of the coefficients suggest that the model is purely descriptive and that coefficients K2 and K3 reflect a number of phenomena, including the variations in glottic aperture during the respiratory cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Within-Breath Analysis of Respiratory Mechanics in Asthmatic Patients by Forced Oscillation

INTRODUCTION The within-breath analysis of respiratory mechanics by the monofrequency Forced Oscillation Technique (mFOT) is of great interest in both physiopathology studies and the diagnosis of respiratory diseases. However, there are limited data on the use of this technique in the analysis of asthma. This study evaluates within-breath mechanics of asthmatic individuals and the contribution ...

متن کامل

Using the forced oscillation technique to evaluate bronchodilator response in healthy volunteers and in asthma patients presenting a verified positive response.

OBJECTIVE To use the forced oscillation technique to evaluate asthma patients presenting positive bronchodilator responses (confirmed through spirometry) and compare the results with those obtained in healthy individuals. METHODS The study sample consisted of 53 non-smoking volunteers: 24 healthy subjects with no history of pulmonary disease and 29 asthmatics presenting positive bronchodilato...

متن کامل

Within-breath respiratory impedance and airway obstruction in patients with chronic obstructive pulmonary disease

OBJECTIVE Recent work has suggested that within-breath respiratory impedance measurements performed using the forced oscillation technique may help to noninvasively evaluate respiratory mechanics. We investigated the influence of airway obstruction on the within-breath forced oscillation technique in smokers and chronic obstructive pulmonary disease patients and evaluated the contribution of th...

متن کامل

Measurement duration impacts variability but not impedance measured by the forced oscillation technique in healthy, asthma and COPD subjects

The forced oscillation technique (FOT) is gaining clinical acceptance, facilitated by more commercial devices and clinical data. However, the effects of variations in testing protocols used in FOT data acquisition are unknown. We describe the effect of duration of data acquisition on FOT results in subjects with asthma, chronic obstructive pulmonary disease (COPD) and healthy controls. FOT data...

متن کامل

Detection of expiratory flow limitation in COPD using the forced oscillation technique.

Expiratory flow limitation (EFL) during tidal breathing is a major determinant of dynamic hyperinflation and exercise limitation in chronic obstructive pulmonary disease (COPD). Current methods of detecting this are either invasive or unsuited to following changes breath-by-breath. It was hypothesised that tidal flow limitation would substantially reduce the total respiratory system reactance (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European respiratory journal

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 1992